Rapid three-dimensional imaging of individual insulin release events by Nipkow disc confocal microscopy.
نویسندگان
چکیده
Minute-to-minute control of the release of insulin by pancreatic beta-cells in response to glucose or other stimuli requires the precise delivery of large dense-core vesicles to the plasma membrane and regulated exocytosis. At present, the precise spatial organization at the cell surface and the nature of these events ('transient' versus 'full fusion') are debated. In order to monitor secretory events simultaneously over most of the surface of clusters of single MIN6 beta-cells, we have expressed recombinant neuropeptide Y-Venus (an enhanced and vesicle-targeted form of yellow fluorescent protein) as an insulin surrogate. Individual exocytotic events were monitored using Nipkow spinning disc confocal microscopy, with acquisition of a three-dimensional complete image (eight to twelve confocal slices) in <1 s, in response to cell depolarization. Corroborating earlier studies using TIRF (total internal reflection fluorescence) microscopy, this approach indicates that events occur with roughly equal probability over the entire cell surface, with only minimal clustering in individual areas, and provides no evidence for multiple events at the same site. Nipkow disc confocal imaging may thus provide a useful tool to determine whether event types occur at different sites at the cell surface and to explore the role of endocytic proteins including dynamin-1 and -2 in terminating individual exocytotic events.
منابع مشابه
Confocal Microscopy of Director Structures in Strongly Confined and Composite Systems
We review approaches for simultaneous imaging of three-dimensional director structures and component distributions in composite materials using fluorescence confocal polarizing microscopy. To study dynamic processes in these systems, we use the Nipkow-disk microscope in which the confocal images are obtained within milliseconds. The visualized director fields, free-standing film profiles, and o...
متن کاملHigh-speed multineuron calcium imaging using Nipkow-type confocal microscopy.
Conventional confocal and two-photon microscopy scan the field of view sequentially with single-point laser illumination. This raster-scanning method constrains video speeds to tens of frames per second, which are too slow to capture the temporal patterns of fast electrical events initiated by neurons. Nipkow-type spinning-disk confocal microscopy resolves this problem by the use of multiple la...
متن کاملFocused laser beams and liquid crystals: fast three-dimensional imaging of structures and topological defects
We show how a tightly focused laser beam can serve as a tool to image complex patterns of the director using the technique of fluorescence confocal polarizing microscopy (FCPM). We expand the capabilities of FCPM into the domain of real-time scanning in order to study the dynamic processes at the time scale of about 1ms. In this approach which we call Fast FCPM, confocal imaging is performed us...
متن کاملNipkow confocal imaging from deep brain tissues.
One of the problems in imaging from brain tissues is light-scattering. Thus, multiphoton laser scanning microscopy is widely used to optically access fluorescent signals located deeply in tissues. Here we report that Nipkow-type spinning-disk one-photon confocal microscopy, which embodies high temporal resolution and slow photobleaching, is also capable of imaging tissues to a depth of up to 15...
متن کاملExtended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy
BACKGROUND Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 34 Pt 5 شماره
صفحات -
تاریخ انتشار 2006